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Vibrations of microemulsion droplets and vesicles with compressible surface layer
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The surface vibration spectra of liquid droplets with flexible interfaces, like microemulsion droplets or
vesicles, are studied. As distinct from the previous theories, we proceed with exact solutions of hydrodynamic
equations for incompressible bulk fluids inside and outside the droplet. The dynamical equations for the
interface are those obtained by Lebedev and Muratov@JETP68, 1011~1989!# but with the improved continuity
equation for the surface layer. Within the Helfrich’s concept of the interfacial elasticity and taking into account
the compressibility of the surface layer, the exact equation is obtained for the frequencies of the droplet
vibrations. The equation describes uniformly a broad region of frequencies from the lowest, almost purely
relaxation modes, up to the modes determined mainly by the change of the area per molecule of the layer. The
dispersion laws for some of the modes are obtained analytically in the limits of large and small penetration
depths of the corresponding waves. Our analysis corrects the previous results concerning the relaxation modes,
the capillary wave frequency and the frequency of the mode connected with the fluctuations of molecules in the
surface layer. An additional mode of this kind is obtained for almost incompressible layers. In the region
corresponding to large penetration depths, a couple of modes exist with frequencies depending both on the
surface elasticity and compressibility. In the limit of infinite compressibility of the layer, the lower of the two
modes disappears. The conditions necessary for the existence of all the modes were specified. Some represen-
tative numerical solutions of the obtained equation are presented as depending on various values of the model
parameters including those for realistic microemulsion systems.@S1063-651X~98!06812-3#

PACS number~s!: 68.10.2m, 05.40.1j, 68.35.Ja
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I. INTRODUCTION

In the past years, a voluminous literature has appea
dealing with the physical properties of microemulsion a
vesicle systems@1,2#. Although there are many experiment
probes for the static structure, the dynamics of these
pramolecular systems is less well understood. To access
dynamics, in particular, thermal fluctuations of droplet m
croemulsions that provide a dynamical probe of the bend
properties of surfactant interfaces, the highest resolu
spectroscopy methods are needed. Among them, spin-
neutron scattering, which only can access the fluctuation
a local scale, has been employed to study the shape fluc
tions of microemulsion droplets@3#. However, so far only the
lowest overdamped mode of the fluctuations has been in
tigated@4,5#. Based on the theory@6# and with comparison of
the dynamic and static measurements, the experim
yielded the bending moduli of the surfactant layer. Toget
with the spontaneous curvatureCs , these moduli~the mean
rigidity k and Gaussian modulusk̄) are the main parameter
within the context of Canham-Helfrich model of interfaci
elasticity representing a very successful approach to un
standing the behavior of microemulsions and vesicles@7,8#.
However, there are other important parameters charact
ing the surfactant film or vesicle membrane and their dyna
ics in the low-frequency region. So, it is known@9# that the
adsorbed surfactant layer can essentially influence hydro
namic properties of the droplet. The changes of the dro
shape are connected with the stretches and compressio
the layer and thus with the changes of the concentration
molecules in the layer. These changes are usually assum
belong to the higher-frequency range of the fluctuations
PRE 581063-651X/98/58~6!/7598~8!/$15.00
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on the basis of a separation of energy scales@6# are not
considered. However, the characteristics of real systems
quite different and a more general theory must take into
count fluctuations of the molecules of the surface film with
change of the area per molecule, e.g., the fluctuations of
surfactant. A parameter controlling these concentrat
changes is essentially the surface elastic modulusB, con-
nected with the surface compressibility 1/B (B5
2ns]a/]ns.0, wherens is the equilibrium number of mol-
ecules per unit area of the surface@10–12#!, and a is the
surface tension for a flat interface@13#. The latter constant is
often zero or anomalously low for vesicles and microem
sions but for some droplets with large radii,@102 Å ~note
that only droplets with radii larger or comparable with 100
can be considered within the phenomenology when
thickness of the layer is neglected!, a can become significan
in the expansion of the surface energy density,

«s5a2bS 1

R1
1

1

R2
D1

k

2 S 1

R1
1

1

R2
D 2

1
k̄

R1R2
. ~1!

HereRi are the principal local curvature radii, andb5Csk
is connected with the spontaneous curvatureCs52/Rs (Rs is
the spontaneous radius of curvature!. The coefficients in Eq.
~1! are widely used in the literature. We only note thata
5s12k/Rs

2 ~s is the microscopic interfacial tension!, k
.0, 2k1k̄.0, andb.0 for microemulsion droplets~if Ri
are measured from the interior to exterior of the droplet!. For
vesicles, described by much of the same physics,b50 ~for a
free vesicle in conditions when the symmetry considerat
is applicable!. In this case there is no genuine surface tens
a, but rather a constraint on the total area@2#. If the vesicle
7598 © 1998 The American Physical Society
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membrane is incompressible, the total area is constant w
the opposite is not true. Usually, the membrane is though
be almost incompressible. In our description the area c
straint is not used, the membrane is, in general, compr
ible, and the limit of incompressible membrane is obtain
whenB→`.

The stability of the droplet with respect to small pertu
bations is ensured by the condition

a l5a22b/R01k l ~ l 11!/R0
2.0, ~2!

where the orbital numberl appears after the expansion of th
distanceR from the center of mass of the droplet to its su
face,

R~q,w!2R05u~q,w!5R0(
lm

alm~ t !Ylm~q,w!, ~3!

whereR0 is a radius of the sphere with the same volume
the droplet, andYlm are spherical harmonics. The indexm
runs from 2 l to l, and l 52,...,l max, where l max is usually
assumed;R0 /d, d being a typical molecular diameter@10#.
The phenomenology of the microemulsion droplet format
can be found in@12,13#. The statistical mechanics of micro
emulsions~but neglecting the surface compressibility! in the
case when a dilute droplet phase coexists with an ex
phase of the dispersed fluid has been developed in@14#. In
that work the contributions of the modes with large numb
l are suppressed more exactly and the renormalization o
parametersCs , k, and k̄ due to the shape fluctuations
calculated. In what follows we assume all the parametera,
k, k̄, and Rs are already renormalized. Except fora their
dependence on the surface densityns can be neglected@12#.
One more parameter that is usually neglected in the des
tion of the microemulsion droplet or vesicle dynamics is t
surface mass density of the interfacial layer,rs . Again, this
is not always justified, at least for higher numbersl since, as
will be seen below, the quantities to be compared arers /R0 ,
r1 / l , andr2 /( l 11), wherer1 and r2 are densities of the
bulk fluids inside and outside the droplet, respectively.

The role of the discussed parameters is well seen con
ering the dispersion laws of the normal mode frequenc
connected with the fluctuations of the droplet surface fi
Such modes were studied in a number of papers. Usu
only the lowest relaxational mode is considered~e.g.,
@15,6,16#!. A mode determined by the compressibility of th
layer and thus reflecting the surfactant concentration fluc
tions has been predicted in Ref.@11# for Langmuir films at
plane water-air interfaces and later a similar mode has b
calculated also for droplet microemulsions@12,17#. The char-
acter of this mode that has a very specific dispersion law
fully determined by the character of conservation of the m
ecules on the curved droplet surface. In@12,17,18# the con-
tinuity equation for the surfactants at the interface was u
in the traditional form@9# which is, for two-dimensional liq-
uid interfaces, only a special case as discussed in deta
@19# and @16#.

The aim of this work is to calculate the spectra of t
vibration modes connected with flexible interfaces of mic
emulsion and emulsion droplets or vesicles, with the att
tion given to the effects of the fluctuations of the molecu
ile
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on the surface. Due to this, we do not use the concept of
excess area conservation as in@15,6#. While @15,6# were de-
voted to the study of shape fluctuations of such vesicle dr
lets as are not spherical in equilibrium, we consider the fl
tuations of spherical droplets coated with a compress
film. The most general approaches for our purposes w
developed in@12# and @10#. Nevertheless, the former theor
has to be improved as discussed above, and the latter
does not take into account the curvature energy that is es
tial for microemulsions.

We assume the bulk fluids to be incompressible since
the frequency range of interest the compressibility effects
the dispersion laws and dynamical structure factors of s
tering are small@18,20#. We consider fluctuations of the
droplets not influenced by other droplets in the solution. T
model assumes impenetrable interfaces, that is, the flow
the molecules between the surface and the bulk phase is
sent. These slow processes must be taken into account w
the frequenciesv→0 are considered@11#. Since we study
the dynamics of an individual droplet, the thermodynam
of the system is of less importance; particularly, the resu
are applicable for both one- and two-phase microemulsi
@13#. The thermodynamics becomes essential in calculati
of the dynamical structure factors when the results must
averaged over the equilibrium distribution in the droplet
dii. Within the discussed model, using exact solutions of
hydrodynamic equations, we obtain an exact equation for
surface vibration frequencies of the droplet. This equati
depending on the parameters for real systems, describ
broad range of frequencies and can be solved numeric
Here we obtain its analytical solutions for some interest
limiting cases. The character of the studied collective mo
is determined by the relation between the droplet sizeR0 ,
the penetration depth of the corresponding viscous wavd
;(h/rv)1/2, and the parameters of the surface energy.
this way we obtain dispersion relations for two almost pur
relaxational ~overdamped! modes, the capillary wave fre
quency, and two frequencies connected with the fluctuati
of the molecules in the surface layer, one of them not d
cussed in the literature so far. The two overdamped mo
depend both on the elasticity and compressibility of the s
face and the lower of them disappears only when the co
pressibility modulusB is equal to 0. As opposite to the fre
quency of the capillary wave, the highest two modes
determined mainly by the surface compressibility. To o
knowledge, our approach allowed us to give the conditio
necessary for the existence of all these modes in more d
than had been possible thus far. We also solved the obta
characteristic equation for the surface vibration frequenc
of the droplet numerically. Some representative numer
solutions are presented for the frequencies as dependin
the orbital numberl and various values of the model param
eters including those for realistic microemulsion systems
perimentally studied in the literature.

II. CHARACTERISTIC EQUATION FOR THE SURFACE
VIBRATION FREQUENCIES

For further progress in the study of the dynamics of m
croemulsion and vesicle systems it is important to firm
establish the consequences of the existing theories. In
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ticular, the interpretation of dynamic experiments requi
detailed knowledge of the vibration spectra of fluctuati
droplets. As discussed above, we proceed with the theor
Ref. 12~later developed in@19,16#!. The method of analysis
comprises a solution of the linearized hydrodynam
~Navier-Stokes and continuity! equations for the fluid inside
and outside the droplet, and the boundary conditions at
interface. The general method of their derivation was
scribed in detail in@11# and applied for plane interfaces. I
the case of the droplets with finite radii, the Helfrich curv
ture energy~1! must be taken into account@12#. The linear-
ized variant of these equations~the velocities and deviation
of the surface density of molecules from its equilibriu
value are assumed to be small! is as follows:

rs

]n r
s

]t
2

D'12

R0
2 Fa2

2b

R0
2

kD'

R0
2 Gu

5p182p2822
]

]r
~h1n r12h2n r2!, ~4!

rs

]nq
s

]t
2

1

R0

]a

]ns

]ns8

]q
5

1

R0

]

]q
~h2n r22h1n r1!

1S ]

]r
2

1

R0
D ~h2nq22h1nq1!,

~5!

rs

]nw
s

]t
2

1

R0sin q

]a

]ns

]ns8

]w
5

1

R0sin q

]

]w
~h2n r22h1n r1!

1S ]

]r
2

1

R0
D ~h2nw22h1nw1!.

~6!

In addition to the quantities already discussed,nW s(n r
s ,ng

s ,nw
s )

is the velocity of the interface in spherical coordinates,D' is
the angle part of the operatorr 2D in spherical coordinates,nW
is the velocity of bulk fluids,p8 is the variable part of the
pressurep, h is the viscosity, and the indices 1 and 2 refer
the interior and exterior of the droplet. The deviation of t
number density of~e.g., surfactant! molecules of the surface
from its equilibrium value isns8 that can be expanded i
spherical harmonics as

ns85ns (
l .0,m

n lmYlm . ~7!

After differentiation, all the variables are related tor 5R0 .
In addition, we havenW 15nW 25nW s at r 5R0 , ]u/]t5n r

s , and
the continuity equation differs from that used in@9,12,17# by
a term proportional to the radial velocity of the surface,

]ns8

]t
1

ns

R0
S 1

sin q

]

]q
nqsin q1

1

sin q

]nw
s

]w
12n r

sD 50.

~8!
s

of

e
-

-

Together with the well-known hydrodynamic equations f
incompressible bulk fluids@9#, Eqs.~3!–~8! represent a full
set for the determination of the frequency spectrum of sm
vibrations of the droplet. The velocity can be searched fo
the form~since only poloidal solutions of the problem exis!

nW 5(
lm

S eW r

l ~ l 11!

r 2 1eWq

1

r

]2

]r ]q

1eWw

1

r sin q

]2

]r ]w Dulm~r ,t !Ylm~q,w!. ~9!

We rewrite all the equations for the Fourier compone
;exp(2ivt) of time-dependent quantities. It is suitable
express the exact solutions of the Navier-Stokes equat
for both regions in terms of the spherical Bessel functio
@21# j l(z1) andhl

(1)(z2),

ulm
~1!~r ,0!5Clm

~1!r j l~z1!2 ib l
~1!

r l 11

r1v
, 0<r<R0 ;

ulm
~2!~r ,0!5Clm

~2!rhl
~1!~z2!1 ib l

~2!
r 2 l

r2v
,

r>R0 , zj5r ~ ivr j /h j !
1/2. ~10!

HereC andb are constants of integration, andb5B(t50)
comes from the expansion of the pressure:

p185(
lm

Bl
~1!~ l 11!r lYlm , p285(

lm
Bl

~2!lr 2 l 21Ylm .

~11!

The solution~10! is chosen to be finite asr→0. To exclude
also the exponential divergence atr→`, one must usehl

(1)

if Re@i(iv)1/2#,0 ~when the second of the possible roots
taken,hl

(1) has to be replaced byhl
(2)). Substituting Eq.~10!

in equations containing the velocitiesnW , and combining
them, we obtain the following exact equation with respect
v:

H r1

l
1

1

2l 11

z1 j l 11

j l
F Al

v22r l22~ l 12!PG J
3H 1

2l 11

z2hl 21
~1!

hl
~1! Fnl~ l 21!

v2 1
rs~ l 11!

R0

22~ l 221!PG2r2J
5H 1

2l 11

z2hl 21
~1!

hl
~1! F Al

v22r l12~ l 21!PG1
r2

l 11J
3H r12

1

2l 11

z1 j l 11

j l
Fnl~ l 12!

v2 1
rsl

R0

12l ~ l 12!PG J , ~12!
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Al5a l~ l 21!~ l 12!R0
23, nl5ns

]a

]ns
l ~ l 11!R0

23,

r l5
r1

l
1

r2

l 11
1

rs

R0
, P5

r1

z1
22

r2

z2
2 , ~13!

andzj hereafter are taken atr 5R0 . Now we can prove tha
the model 51 does not appear in the characteristic equat
~12!. This mode corresponds to the translational motion
the droplet without its deformation. Then in the system co
nected with the droplet, with the origin in its center of ma
u50 @Eq. ~3!#. With this condition our system of equation
is self-consistent only in the case when alson1m50. For l
51 there is no motion in the surface layer and the exp
sions~7! ~as distinct from@12# and @10#! and ~3! both begin
with l 52. Finally, it has been discussed in@11,12# that in the
region of very low frequencies the exchange of the m
ecules between the layer and the surroundings must be t
into account. This would change the continuity equation~8!,
and correspondingly Eq.~12! and its solutions. Togethe
with other authors we neglect this exchange: the validity
such an approximation~impermeability of the surface film!
has been proven in@16# for the lowest-frequency modes~the
higher the modes the better justified this approximation i!.

III. ANALYTICAL SOLUTIONS FOR THE NORMAL
MODE FREQUENCIES

Equation~12! gives wide possibilities for the analysis o
the surface spectra. Below we consider a few examples
can be treated analytically. The most often studied cas
the literature corresponds to large penetration depths of
shear waves inside and outside the droplet:d@R0 , which
means smalluzi u. Using the asymptotic expansions for th
Bessel functions@21# for uzi u→0, we obtain a quadratic
equation with respect tov, which is truly neglecting the
fourth-order terms inzi ,

12
v rel

v
2 ivS l'0,

S l5
R0

2

~2l 21!~2l 13! H 2r1
rs

R0

4l 214l 13

2l 11 J . ~14!

The expression forS l , which is rather complicated in th
general case, is shown here in the case of vesicles. From
solutions of Eq.~14! the solution consistent with the use
approximation is a purely relaxation modev'v rel with
small corrections of the order;z2. Here

v rel'2
i

2l 11

R0
2

plql
$Al l ~ l 11!~pl1ql !

2nl@~ l 221!pl1 l ~ l 12!ql #%, ~15!

pl5h1~2l 214l 13!12h2l ~ l 12!,

ql52h1~ l 221!1h2~2l 211!. ~16!
n
f
-
,

-

-
en

f

at
in
he

wo

Now, let us take into account the fourth-order terms of sm
zi in the asymptotic expansion of the Bessel functions in E
~12!. Then the characteristic equation~12! simplifies to

12
v rel

v
2

J l

v2 '0, J l52
AlnlR0

2l ~ l 11!

h2~2l 21!~2l 11!2~2l 13!
.

~17!

Here also a complicated expression forJ l is given in the
case of vesicles. The solutions of Eq.~17! depend on the
relation j54J l /uv relu2 that can be smaller than or of th
order of unity. The simplest case, which includes physica
interesting limits B52ns]a/]ns→0 and B→`, corre-
sponds toj!1 when we have again one of the solutionsv
'v rel , and the new frequency isv'Ã rel ,

Ã rel' i
AlnlR0

4

plql uv relu
l ~ l 11!, ~18!

uÃ relu!uv relu. This mode exists only for nonzero compres
ibility modulus B. In the limits of small and largeB, the
analytical expressions forÃ rel are as follows:

uÃ relu'
2nlR0

2~2l 11!

pl1ql
, B→0,

uÃ relu'
AlR0

2l ~ l 11!~2l 11!

~ l 221!pl1 l ~ l 12!ql
, B→`. ~18a!

WhenB→0, Eq. ~15! is in agreement with our calculation
@17# and the results found in the theories@16,22# ~if the cap-
illary or generalized Laplace condition@13# p12p2

52a/R022b/R0
2 is taken into account!, that neglect from

the beginning the inertia terms in the hydrodynamic eq
tions. On the other hand,v rel differs from the frequency
found by Lebedev and Muratov@12,23#. It is to be noted that
in a number of previous less general studies, e.g.,@15,6,22#,
the droplet dynamics is calculated using equations fo
sphere neglecting the fluctuations of molecules in the surf
layer, i.e., the model equations do not contain terms;B.
This means that if we formally putB50 in Eq. ~15!, our
expression forv rel ~since in this caseÃ rel does not exist!
should correspond to frequencies found in these wo
While the frequency found in@22# ~see also references ther!
for microemulsions is exactly Eq.~16! with B50, the fre-
quency obtained in the often cited work@6# is different. To
compare the latter result by Milner and Safran for vesic
with v rel , we have to seth15h25h and formally identify
their Lagrange multiplier2g with our s ~microscopic inter-
facial tension!. However, their frequency still differs from
v rel by the factor (4l 214l 23)/(4l 214l 22). Moreover,
the concept of the constant mean excess areaD @6# leads in
the limit D→0 ~corresponding to spherical droplets in equ
librium! to v→`. The same can be related to the result
Schneider, Jenkins, and Webb@15#, who haveCs50. As to
the lower frequencyÃ rel , we did not find its analytical ex-
pression~18! in the literature. The second of the limits~18a!,
B→` ~incompressible layer@10,16#!, corresponds to the re
sult given in@23# but differs from the frequencies obtained
@16#. The result@6# is thought to describe incompressib
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vesicle membranes. Then it should coincide with Eq.~18a!
for B→`. However, it differs fromÃ rel by the factor (2l 2

12l 21)/(2l 212l 23).
When BÞ0, fluctuations of the molecules in the surfa

layer can significantly influence both thev rel and Ã rel and
could be, in principle, determined from dynamical expe
ments like inelastic scattering of neutrons. The neutron s
tering experiments@3–5# on microemulsions were inter
preted so far within the model@6# with an incompressible
surfactant layer and the curvature elasticity as the resto
force. However, these studies yielded values of the bend
rigidity k higher than measured with indirect macroscopi
or optical methods@24#. We thus suppose that it would b
interesting to reconsider the interpretation of the neut
scattering experiments on microemulsions@3–5# with the ac-
count for surface compressibility.

Now, let the penetration depth of the shear waves outs
and inside the droplet be small. In the main approximat
for uzi u→` we have from Eq.~12!

~Al2r lv
2!~nl1rsv

2/R0!'0. ~19!

Thus one of the characteristic frequenciesvcap corresponds
to the capillary wave. It is to be expected that the oth
frequencyvr is much higher since usually we havers /R0
!r l ~andnl@Al). The equation that describes the region
frequencies from the capillary frequencies tovr is ~correc-
tions to it are of the order ofz24):

r lS vcap
2

v2 21D H rs

R0
S 12

vr
2

v2D
3S 211 i

l 11

z1

1
i l

z2
D 2

ir1

z1

2
ir2

z2
J

1
ir1rs

lz1R0
F l 112~ l 21!

vr
2

v2G
1

ir2rs

~ l 11!z2R0
F l 2~ l 12!

vr
2

v2G'0. ~20!

The solution describing weakly damped capillary waves d
not depend on the surface compressibility,

v'vcapF12
11 i

2R0r lA2vcap
S l 21

l
Ar1h11

l 12

l 11
Ar2h2D G ,

vcap
2 5

Al

r l
. ~21!

This solution is a generalization of the well-known classi
result @25#.

The region of frequencies much higher thanvcap is de-
scribed by the equation

d1

R0r l

rs
S ivr

v D 1/2

1S vr
2

v221D F S ivr

v D 1/2

d221G'0,

~22!

where the small quantitiesd1 andd2 ~of order;1/z) are
-
t-

g
g
l

n

e
n

r

f

s

l

d15
1

R0r lAvr
HAr1h1S 11

2rs

lR0r l
D

1Ar2h2S 12
2rs

~ l 11!R0r l
D J ,

~23!

d25
1

R0r lAvr
HAh1

r1
F ~ l 11!r l2r1

l 21

l G
1Ah2

r2
F lr l2r2

l 12

l 11G J .

When not onlyd1 is small but alsod1R0r l /rs!1, the solu-
tion of Eq. ~22! is

v'vrS 12
11 i

2&
d1

R0r l

rs
D , vr5S 2

nlR0

rs
D 1/2

. ~24!

This frequency did not appear in previous papers, parti
larly in @12#, where the surface densityrs was neglected.
There has been found another surface mode in@12#, con-
nected with the fluctuations of molecules in the surface
similar mode can be obtained here also from Eq.~22! as a
special case when the fifth-order equation is reduced ass
ing smallx5uv/vru!1, d2!x1/2, andd2!x2d1R0r l /rs . In
contrast to the previous case, the quantityd1R0r l /rs is much
larger than unity. Then the solution isv'vn5vr

(2 i )1/3(d1R0r l /rs)
22/3, that is,

vn'
1

2
~6)2 i !H 1

2nlR0
FAr1h1S 11

2rs

lR0r l
D

1Ar2h2S 12
2rs

~ l 11!R0r l
D G J 22/3

. ~25!

Finally, there are no solutions for the frequencies in the
gion much higher thanvr .

IV. SIMPLE ESTIMATIONS, NUMERICAL
SOLUTIONS, AND DISCUSSION

The variety of the model parameters for real systems
broad, so we shall only briefly summarize the conditions
which the calculated modes could exist. The first assump
to be taken into account is that the droplet radii must be la
enough, at leastR0 must be larger or of the order of 100 Å
For simplicity, in the estimations we assume that the para
eters of the bulk fluids,h andr, are close to those for wate
which is true exactly for vesicles and approximately f
many systems of interest.

First, consider the modev rel @Eq. ~15!# that is most fre-
quently studied in the literature. It was found here using
asymptoticsuzu→0. In fact, the obtained quadratic equatio
~14! ~as seen from the asymptotic expansion of the Bes
functions @21#! serves as a good approximation to Eq.~12!
when uz2u!A3 and uz1u can be less or even of the order
unity, uz1u!8 ~for all values of l including l 52), or uzi u
!2l ~if only large l @2 are considered!. In addition, to ob-
tain v rel we require 4uv relS l u!1, whereS l;R0

2r/10h ( l
52) and S l;R0

2(r/ l 1rs /R0)/2lh ( l @2). Note that for
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largest possiblel the termrs /R0 is not negligible in com-
parison withr/ l and should be taken into account. Usual
for microemulsion or vesicle systems,a is very small,
,1024 J m22. But when it dominates ina l from Eq. ~2!,
and the modulusB is negligible, the above requirements a
satisfied if aR0(r/ l 1rs /R0)/2h2!1, for all valuesl. For
realistic values ofa (;1022 SI or smaller! andrs this con-
dition holds for radii up to;5•102 Å ( l 52,3,...). Whenl is
large, we needR0, l (2310252rs)1023 m which is always
satisfied for highest numbersl. Other possible cases can b
analyzed analogously. So, when the bending terms domi
v rel , the approximation requireskr/R0h2!1 (l 52) or
k l 2(r/ l 1rs /R0)/4R0h2!1 ~largel! that is well satisfied for
known systems. The frequency then scales with 1/R0

3 @3–6#.
When the compressibility term;B dominates in Eq.~15!,
the estimation forv rel is ;Bl/4R0h, for both l 52 and l
@2. In the literature@12#, B is often assumed to be of th
order of the usual surface tensions;1022 J m22, so the con-
ditions for the existence of such a mode are similar to
above case when the surface tension dominatesv rel . The
mode can exist for droplets with radii up to 500 Å or pr
portionally larger with decreasingB,1022 J m22. For high
numbersl the radius can be approximatelyl /2 times larger,
except for the case whenrs is unusually large, larger tha
1025 kg m22. Thus we see that the discussed mode in
case when the surfactants show appreciable changes i
area per molecule can exist in microemulsions. Howeve
cannot be the frequency of the mode observed in neu
scattering experiments@3–5# where the relevant frequencie
scaled with 1/R0

3. In any case, there is a wide region of th
values ofB when the surface compressibility significant
influences the relaxation mode. This fact should be ta
into account in the interpretations of dynamic experimen
The scaling 1/R0

3 can be shown also by the frequencyÃ rel

from Eq. ~18!. This is possible in the case when the high
relaxational frequencyv rel is determined mainly by the com
pressibility and can be estimated asv rel(B→`);Bl/4R0h
;Ã rel(B→0) andAl;R0

25 @Eqs. ~13! and ~2!# is given by
the curvature elasticity. In this caseÃ rel practically does not
depend on the compressibility modulusB and its estimation
is uÃ relu;(a l /4R0h) l , which coincides with the expressio
for v rel in the opposite case whenB50. If the conditions for
the existence of the frequencyv rel are satisfied, the quadrati
equation~17! also holds. Its solutions are governed by t
parameterj, small in both the considered cases of small a
largeB, when the above estimations are valid. For interm
diate values ofB (2nl comparable toAl , so thatj becomes
comparable to 1!, the solutionsv'(v rel/2)@16(12j)#1/2

can differ quite significantly fromv rel andÃ rel .
The above discussed results are demonstrated by Fig

and 2. Figure 1 shows numerical solutions of the charac
istic equation~12! with parameters corresponding to wate
in-oil ~decane! microemulsion systems studied in Ref.@5#: at
the temperature 20 °C the bulk densities and viscosities
h l51023 Pa s, h250.64831023 Pa s, r15103 kg m23,
r250.733103 kg m23, and the equilibrium radius isR0
5100 Å. The spin echo experiments@5# yielded the follow-
ing bending moduli for the AOT sodium di-2-ethylhexyl su
fosuccinate surfactant layer:k53.8kBT, and k̄ close to
21.9k. The remaining parametersRs anda ~the spontaneous
,
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radius of curvature and the surface tension coefficient! are
calculated for the case of two-phase coexistence@13#, Rs

52kR0 /(2k1k̄) anda5(2k1k̄)/R0
2. The surface density

rs did not affect the calculations and can be neglected.
these parameters the used approximation~large penetration
depths of the waves! is well satisfied and leads to almo
purely relaxational modes. Figure 1 gives the dependenc
the real and imaginary parts of the frequencyv on the orbital

FIG. 1. Numerical solutions of Eq.~12! for the frequencyv
5Rev1i Im v depending on the orbital numberl. The system pa-
rameters correspond to water-in-oil microemulsion described in
text: h151023 Pa s, h250.64831023 Pa s, r15103 kg m23,
r250.733103 kg m23, rs50, R05100 Å, k53.8kBT, k̄5
21.9k @5#, and the quantitiesRs anda are calculated for the case o
two-phase coexistence:Rs52kR0 /(2k1k̄) and a5(2k
1k̄)/R0

2. The lower and upper parts of the figure showuRevu and
uIm vu, respectively. When the surface compressibility modulusB
50 ~dark circles!, uIm vu is indistinguishable from the analytica
solutionv rel ~Eq. 15!. ForB51022 J m22 ~open circles!, the higher
frequency is well described by the expression forv rel , and the
lower one corresponds toÃ rel from Eq. ~18!.

FIG. 2. The dependence ofuIm vu on the droplet radius forB
50.01 J m22 and two values ofl ( l 52 and l 590). Numerical
~open circles! solutions to Eq.~12! and analytical~solid line! solu-
tionsv rel andÃ rel ~Eqs. 15 and 18! are shown,Ã rel being the lower
frequency. The used parameters correspond to oil-in-water mi
emulsion system@26#: h150.64831023 Pa s, h251023 Pa s,
r150.733103 kg m23, r25103 kg m23, and rs51026 kg m22.
The Gaussian modulusk̄521.75k, 2k1k̄50.9kBT @27#, and the
parametersRs anda are determined as in Fig. 1.
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numberl. In the case when the compressibility modulusB
50, the absolute value of the imaginary part of the freque
cannot be distinguished on the graphs from the analyt
solutionv rel given by Eq.~15! ~the difference from the ana
lytical solution @6# used in the interpretation of the exper
mental data@4,5# is, however, appreciable and grows wi
the numberl when the conditions for the existence of th
mode become less well satisfied!. In agreement with our ana
lytical analysis, when BÞ0 ~we used the valueB
51022 J m22), numerical calculations possess two so
tions: one of them well described by the expression forv rel

and the solution with lower values ofuIm vu corresponds to
Ã rel from Eq. ~18!. The real part of the calculated frequen
is relatively very small and sharply decreases to zero w
increasingl. It could be, however, observable for the lowe
l ~the maximum of uRevu'1.63106 s21, when B
51022 J m22 and l 52) in dynamic experiments by a fre
quency shift from the central peak of the scattering. Figur
shows the dependence ofuIm vu on the droplet radius forB
50.01 J m22 and two values ofl ( l 52 and largel 590).
The parameters used here are the same as in Ref.@26# for the
oil ~decane!-in-water surfactant (C8E3) system: h150.648
31023 Pa s, h251023 Pa s, r150.733103 kg m23, r2
5103 kg m23, and 2k1k̄50.9kBT. Now the Gaussian
modulusk̄ is chosen as in@27#, k̄521.75k, and as above
the parametersRs anda are determined for the case of two
phase coexistence@26#. The surface layer thickness 11
determined in@26# allowed us to estimate the surface dens
rs , which cannot be neglected for largel, by the value
1026 kg m22. In agreement with our estimations for largeB,
for l 52 ~and l 590 but largeR0) the frequencyv rel scales
with 1/R0 and Ã rel;1/R0

3. For large l and small radii the
bending term is dominant inv rel so it scales;1/R0

3, and
Ã rel;1/R0 . Our analytical results describe very well the n
merical solutions of Eq.~12!, especially in the casel 52. The
only exception is a small region around the radius 1027 m
when the parameterj54uÃ reluuv relu21 @introduced after Eq.
~17!# becomes for largel very close to unity and the dete
minant of the quadratic equation~17! close to zero. In such a
case the small terms which were neglected in obtaining
~17! should be taken into account to obtain a corresponde
with the exact equation~12!.

Now consider the frequencies calculated with the assu
tion uzu→` ~it is seen from the asymptotics of the Bess
functions that the approximation works well if we haveuzu
@ l 11). The frequencyvcap does not depend onB so we
have to distinguish the two following cases. For the first o
when the bending terms dominate ina l , the used asymptot
ics cannot serve as a good approximation for known syst
since it requires unrealistic~too large! bending moduli.
Whena is large and dominatesa l , the approximation can be
good for very large droplets and works better for smal
according to the inequalitiesaR0@1028 J/m (l 52), or
aR0 / l @231029 J/m (l @2). The conditions at which the
surface frequencyvr exists @Eq. ~24!#, can be satisfied for
large enough values of the modulusB. It is seen from two
inequalities that for bothl 52 and l @2 read~all quantities
are in SI units! 531024 (10/Brs)

1/4!(rsl /R0)21/2

!(Brs/10)1/4. Thus for surface densitiesrs in the range
1027– 1026 kg m22 the modulusB must be much larger tha
y
al

-

h
t

2
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ce
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,

s

usual surface tensions. A good approximation for the cal
lation of the frequencyvn @Eq. ~25!# can be reached fo
droplets with large radiiR0 and/or small surface densityrs .
Depending on the system parameters, the following inequ
ties have to be satisfied:BR0@1028 ( l 52) or BR0@2l
31029 J m21 ~large l!, and 10(BR0 / l )1/2@(10Brs)

3/4 or 3
3103(BR0 / l )1/2@2(10Brs)

1/4 ~the last two conditions ap
plicable for both l 52 and l @2). It is then seen that for
values ofB close to those of the usual surface tension@10,12#
the required radius is very large, much larger than 104 Å; in
this case the mode cannot exist in microemulsions. Figure
and 4 show the dependence of the solutions to Eq.~12! on
the compressibility modulusB. To present the analytical so
lutions for the frequenciesvn andvr , the orbital numberl is
chosen to be small, because in the opposite case it is diffi
to satisfy the conditionsuz1,2u@ l 11. Figure 3 shows the ab
solute values of imaginary and real parts of the frequenc
calculated numerically and according to Eq.~24!. The drop-

FIG. 3. Absolute values of imaginary~dark circles! and real
parts~open circles! of the frequencies calculated numerically fro
Eq. ~12! and analytically according to Eq.~24! for v'vr ~the solid
line is for uIm vu and the thicker line foruRevu) as depending on the
compressibility modulusB. Other parameters are as in Fig. 1, e
cept forrs51025 kg m22.

FIG. 4. Absolute values of imaginary~dark circles! and real
parts~open circles! of the frequencies calculated numerically fro
Eq. ~12! and analytically according to Eq.~25! for v'vn ~the solid
line is for uIm vu and the thicker line foruRevu), as depending on
the compressibility modulusB. Other parameters are as in Fig.
but with rs51027 kg m22 andR051026 m.
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lets are small,R051028 m, the surface density rather hig
rs51025 kg m22, and the modulusB takes large values up
to 103 J m22. Other parameters are the same as for water
oil droplets illustrated by Fig. 1. As already discussed, in
literature the surface layer is usually considered as inc
pressible, which corresponds to infiniteB. In agreement
with the estimations, the picture shows that asB increases to
very large values, the frequency becomes well described
our solutionvr , not found in previous works on the drople
dynamics. The data in Fig. 4 are calculated for oil-
water droplets with much larger radii,R051026 m, small
rs51027 kg m22, andB changing from 0.01 to a few J m22.
Other parameters are as in Fig. 2. For such systems, in
region of largerB, the solution of Eq.~12! shows the ten-
dency to become close to the frequencyvn from Eq. ~25!,
which corresponds to the mode predicted in Ref.@12# as a
mode connected with the redistribution of the surfactant m
ecules on the droplet surface.

In conclusion, we have calculated the surface vibrat
spectra of liquid droplets within the hydrodynamic pheno
enology more exactly than it has been done so far. Firs
all, the inclusion of the compressibility and mass density
the surface layer makes the calculated frequency spe
richer. We have considered the low-frequency region fr
almost purely the relaxation modes to the modes conne
mainly with the change of the surface area per molecule
the layer and described this region uniformly by one eq
tion. This equation was solved numerically and some lim
ing cases were treated analytically. It was found that
finite compressibility of the layer, in conditions when th
ys

. T
-
e
-

by

he
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n
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of
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tra

ed
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r

penetration depths of the waves are large, two relaxatio
modes simultaneously exist instead of one overdamped m
described in the literature. We have also predicted a m
that can exist in the opposite situation of small penetrat
depth, if the layer is almost incompressible. In other ca
our analytical solutions correct the results already kno
from the literature and the approach allowed us to specify
conditions of applicability of the solutions more precise
Except for the capillary wave mode, the compressibility
the layer significantly affects the surface modes. We beli
that some of the predicted features of the surface vibra
spectra~such as the existence of the couple of overdam
but not purely relaxational modes! could stimulate more at-
tention to this influence in further investigations, especia
in the dynamic scattering experiments capable of posses
some of the quantitative characteristics of the liquid dr
systems such as microemulsion, emulsion, and vesicle
tems, which have long been of great interest in physics
applications.
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