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The surface vibration spectra of liquid droplets with flexible interfaces, like microemulsion droplets or
vesicles, are studied. As distinct from the previous theories, we proceed with exact solutions of hydrodynamic
equations for incompressible bulk fluids inside and outside the droplet. The dynamical equations for the
interface are those obtained by Lebedev and Murfl&r P68, 1011(1989] but with the improved continuity
equation for the surface layer. Within the Helfrich’s concept of the interfacial elasticity and taking into account
the compressibility of the surface layer, the exact equation is obtained for the frequencies of the droplet
vibrations. The equation describes uniformly a broad region of frequencies from the lowest, almost purely
relaxation modes, up to the modes determined mainly by the change of the area per molecule of the layer. The
dispersion laws for some of the modes are obtained analytically in the limits of large and small penetration
depths of the corresponding waves. Our analysis corrects the previous results concerning the relaxation modes,
the capillary wave frequency and the frequency of the mode connected with the fluctuations of molecules in the
surface layer. An additional mode of this kind is obtained for almost incompressible layers. In the region
corresponding to large penetration depths, a couple of modes exist with frequencies depending both on the
surface elasticity and compressibility. In the limit of infinite compressibility of the layer, the lower of the two
modes disappears. The conditions necessary for the existence of all the modes were specified. Some represen-
tative numerical solutions of the obtained equation are presented as depending on various values of the model
parameters including those for realistic microemulsion syst¢81k063-651X98)06812-3

PACS numbdss): 68.10—m, 05.40+j, 68.35.Ja

I. INTRODUCTION on the basis of a separation of energy scdlgsare not
considered. However, the characteristics of real systems are
In the past years, a voluminous literature has appeareguite different and a more general theory must take into ac-
dealing with the physical properties of microemulsion andcount fluctuations of the molecules of the surface film with a
vesicle systemfl,2]. Although there are many experimental change of the area per molecule, e.g., the fluctuations of the
probes for the static structure, the dynamics of these susurfactant. A parameter controlling these concentration
pramolecular systems is less well understood. To access tff@anges is essentially the surface elastic mod&uson-
dynamics, in particular, thermal fluctuations of droplet mi-nected with the surface compressibility B1/ (B=
croemulsions that provide a dynamical probe of the bending-Nsda/dns>0, wherens is the equilibrium number of mol-
properties of surfactant interfaces, the highest resolutiogcules per unit area of the surfagb0-12), and @ is the
spectroscopy methods are needed. Among them, spin_ecﬁ@lrface tension for a flat interfa¢&3]. The latter constant is
neutron scattering, which only can access the fluctuations o@ften zero or anomalously low for vesicles and microemul-
a local scale, has been employed to study the shape fluctugions but for some droplets with large rad#10* A (note
tions of microemulsion droplef8]. However, so far only the that only droplets with radii larger or comparable with 100 A
lowest overdamped mode of the fluctuations has been inve§an be considered within the phenomenology when the
tigated[4,5]. Based on the theof] and with comparison of thickness of the layer is negleced can become significant
the dynamic and static measurements, the experimeni8 the expansion of the surface energy density,
yielded the bending moduli of the surfactant layer. Together ,  —
with the spontaneous curvatu@,, these modulithe mean e =a—,8(—+ i) LK <i+ i) . (1)
rigidity k and Gaussian modulug) are the main parameters S Ri Ry 2\R; Ry RiRy’
within the context of Canham-Helfrich model of interfacial
elasticity representing a very successful approach to undeHereR; are the principal local curvature radii, agd=Csk
standing the behavior of microemulsions and vesiffe8].  is connected with the spontaneous curvatdge 2/Rg (Rg is
However, there are other important parameters characterizhe spontaneous radius of curvafuréhe coefficients in Eq.
ing the surfactant film or vesicle membrane and their dynam¢1) are widely used in the literature. We only note that
ics in the low-frequency region. So, it is knoi#] that the =0+ 2«/R? (o is the microscopic interfacial tensipnx
adsorbed surfactant layer can essentially influence hydrody>0, 2x+«>0, andB>0 for microemulsion dropletéf R;
namic properties of the droplet. The changes of the dropleare measured from the interior to exterior of the drgpleor
shape are connected with the stretches and compressions\&sicles, described by much of the same phygesp (for a
the layer and thus with the changes of the concentration diree vesicle in conditions when the symmetry consideration
molecules in the layer. These changes are usually assumeditoapplicablg. In this case there is no genuine surface tension
belong to the higher-frequency range of the fluctuations and, but rather a constraint on the total af@a If the vesicle
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membrane is incompressible, the total area is constant whilen the surface. Due to this, we do not use the concept of the
the opposite is not true. Usually, the membrane is thought texcess area conservation ag1%,6]. While [15,6] were de-

be almost incompressible. In our description the area convoted to the study of shape fluctuations of such vesicle drop-
straint is not used, the membrane is, in general, compres¢ets as are not spherical in equilibrium, we consider the fluc-
ible, and the limit of incompressible membrane is obtaineduations of spherical droplets coated with a compressible

whenB— oo, film. The most general approaches for our purposes were
The stability of the droplet with respect to small pertur- developed if12] and[10]. Nevertheless, the former theory
bations is ensured by the condition has to be improved as discussed above, and the latter one
does not take into account the curvature energy that is essen-
a=a—2BIRy+ kI (1 +1)/R3>0, (2) tial for microemulsions.

We assume the bulk fluids to be incompressible since in
where the orbital numbérappears after the expansion of the the frequency range of interest the compressibility effects on
distanceR from the center of mass of the droplet to its sur-the dispersion laws and dynamical structure factors of scat-
face, tering are small[18,20. We consider fluctuations of the

droplets not influenced by other droplets in the solution. The

model assumes impenetrable interfaces, that is, the flow of
R(%,¢)~Ro=u(d,¢)= RO% Am(D)Yim(%.0), 3 the molecules between the surface and the bulk phase is ab-

sent. These slow processes must be taken into account when

whereR, is a radius of the sphere with the same volume adhe frequencies»—0 are considerefil1]. Since we study
the droplet, andY,, are spherical harmonics. The index the dynamics of an individual droplet, the thermodynamics
runs from —1 to I, and1=2,....| a, Wherel o is usually of the system is of less importance; particularly, the results
assumed-R,/d, d being a typical molecular diametgt0]. @€ applicable for both one- and two-phasg mllcroemuls[ons
The phenomenology of the microemulsion droplet formation 13- The ther.modynamlcs becomes essential in calculations
can be found iff12,13. The statistical mechanics of micro- of the dynamical structure factors when the results must be
emulsions(but neglecting the surface compressibjlity the ayera_ge_d over t_he equilibrium dlstr_lbutlon in the Qroplet ra-
case when a dilute droplet phase coexists with an exceddii. Within the discussed model, using exact solutions of the
phase of the dispersed fluid has been developdd4h In hydrodyngmlc_ equations, we obtain an exact equation for_ the
that work the contributions of the modes with large numbersSurface vibration frequencies of the droplet. This equation,
| are suppressed more exactly and the renormalization of tHé€Pending on the parameters for real systems, describes a
parameter<C,, , and x due to the shape fluctuations is Proad range of frequencies and can be solved numerically.
calculated. In what follows we assume all the parameters Here we obtain its analytical solutions for some interesting
x, x, and R, are already renormalized. Except fartheir limiting cases. The character of the studied collective modes
1 ’ S . . . .
dependence on the surface densigycan be neglectefl?]. 'S determined by the relation between the droplet $tge
One more parameter that is usually neglected in the descrip?® penetration depth of the corresponding viscous wave
tion of the microemulsion droplet or vesicle dynamics is the ™ (7/p®)™% and the parameters of the surface energy. In
surface mass density of the interfacial layey, Again, this this way we obtain dispersion relations for MO almost purely
is not always justified, at least for higher numbksince, as ~ '€laxational (overdampet modes, the capillary wave fre-
will be seen below, the quantities to be comparedm@i®, guency, and two frequencies connected with the fluctuations
p./1, and p, /(1 +1’) wherep; and p, are densities of t'he of the molecules in the surface layer, one of them not dis-
bulk fluids inside and outside the droplet, respectively. ~ cussed in the literature so far. The two overdamped modes
The role of the discussed parameters is well seen consigléPend both on the elasticity and compressibility of the sur-

ering the dispersion laws of the normal mode frequencie&®c€ and the lower of them disappears only when the com-

connected with the fluctuations of the droplet surface film Pressibility modulusB is equal to 0. As opposite to the fre-
yluency of the capillary wave, the highest two modes are

only the lowest relaxational mode is consideréelg., determined mainly by the surface compressibility. To our

[15,6,16). A mode determined by the compressibility of the knowledge, our appr_oach allowed us to give th_e conditions_
layer and thus reflecting the surfactant concentration fluctug?€cessary for the existence of all these modes in more detail
tions has been predicted in RéL1] for Langmuir films at than had pe_en possllble thus far. We also_ solyed the obtal_ned
plane water-air interfaces and later a similar mode has begfharacteristic equation for the surface V|brat|o.n frequenc_:les
calculated also for droplet microemulsidii®,17). The char- of the droplet numerically. Some represgntatwe numgncal
acter of this mode that has a very specific dispersion law iS0!Utions are presented for the frequencies as depending on
fully determined by the character of conservation of the mol-th€ orbital numbet and various values of the model param-
ecules on the curved droplet surface [12,17,18 the con- eters including thpse_for rea.llst|c microemulsion systems ex-
tinuity equation for the surfactants at the interface was usef€rimentally studied in the literature.

in the traditional form 9] which is, for two-dimensional lig-

uid interfaces, only a special case as discussed in detail i, ~ArRACTERISTIC EQUATION FOR THE SURFACE

[19] and[16]. VIBRATION FREQUENCIES
The aim of this work is to calculate the spectra of the Q

vibration modes connected with flexible interfaces of micro- For further progress in the study of the dynamics of mi-
emulsion and emulsion droplets or vesicles, with the atteneroemulsion and vesicle systems it is important to firmly
tion given to the effects of the fluctuations of the moleculesestablish the consequences of the existing theories. In par-
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ticular, the interpretation of dynamic experiments requiresTogether with the well-known hydrodynamic equations for
detailed knowledge of the vibration spectra of fluctuatingincompressible bulk fluidg9], Egs.(3)—(8) represent a full
droplets. As discussed above, we proceed with the theory afet for the determination of the frequency spectrum of small
Ref. 12(later developed ifi19,1€]). The method of analysis vibrations of the droplet. The velocity can be searched for in
comprises a solution of the linearized hydrodynamicthe form(since only poloidal solutions of the problem exist
(Navier-Stokes and continuityequations for the fluid inside

and outside the droplet, and the boundary conditions at the R i+ 1 P

interface. The general method of their derivation was de- V:% & 2 ¥y arod

scribed in detail if11] and applied for plane interfaces. In

the case of the droplets with finite radii, the Helfrich curva- 1 72

ture energy(1) must be taken into accouft2]. The linear- t8 g rsind arde Uim(1, D) Yim( D, ). ©)

ized variant of these equatiofihe velocities and deviations

of the surface density of molecules from its equilibrium We rewrite all the equations for the Fourier components
value are assumed to be smadi as follows: ~exp(—iwt) of time-dependent quantities. It is suitable to
express the exact solutions of the Navier-Stokes equations
for both regions in terms of the spherical Bessel functions

vy A +2 28 kA, _
<t R "R R [21] j(z,) andh{®(zy),
plHl
(1) —c _am R
:pl p2 2 (771Vr1 M2Vr2), (4) Ui (r,00=Cj)rj(z1) |ﬁ| e’ 0<r=<Ry;
ol
(71/?9 1 da (9n 1 49 ul(r%)(rlo)zcl(r%)rhl(l)(zz)_FilB§2)pz_w'
Ps "ot Ro dng SN Ry 5.19(772’42 71Vr1)
r=Ro, zj=r(iwp;/m)™. (10)

g 1
+(—_ —) (m2v92— M1Vo1),
ar R Here C and B are constants of integration, amd=B(t=0)

(5) comes from the expansion of the pressure:

vy 1 dadng 1 g pi=2 B+ DYy, pi=3 BZIr Tty
m m

e 78
Ps"gt  Resin 0 ang 9@  Resin 0 de (m2vr2= M) 11

+ (ai_ Ri)(,h%z_ MV41)- The solution(10) is_ chqsen to be finite as—0. To excllgge
r 0 also the exponential divergencerat>, one must usé,
(6) if Reli(iw)*?]<0 (when the second of the possible roots is
taken,h(") has to be replaced Hy?)). Substituting Eq(10)

in equations containing the velocities, and combining
them, we obtain the following exact equation with respect to

|

n(-1) pll+D)

In addition to the quantities already discussgiy;, vq,v5)
is the velocity of the interface in spherical coordinatks,is
the angle part of the operatofA in spherical coordinates,
is the velocity of bulk fluidsp’ is the variable part of the [ A

pP1 1z
— ——p—2(1+2)P
15)

| 20+1

pressurg, 7 is the viscosity, and the indices 1 and 2 refer to
the interior and exterior of the droplet. The deviation of the
number density ofe.g., surfactantmolecules of the surface 1

. [ ., . 1 z h( )
from its equilibrium value isng that can be expanded in % 21-1

spherical harmonics as 2141 hV 2 Ry
né:ns 2 V|mY|m . (7) _2(|2_1)P _pZ]
1>0m
. .. . 1 Zzh A| P2
After differentiation, all the variables are relatedrteR,. = | —=—p+2(I-1)P |+ —
In addition, we have’, = 7,=° atr=Ry, Ju/dt=»;, and 2l+1 hY |e® I+1
the continuity equation differs from that used[$12,17 by 1 . I+ |
a term proportional to the radial velocity of the surface, _ Zyj+1 [ NN( ) N pst
P1 . 2
2141 w Ry

ang ng[ 1 4 v

—+ = —— —+2v°|=0.

at sin9 g9 "NVt G G T2v) 70 +21(1+2)P } (12)

8
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4 Jda s Now, let us take into account the fourth-order terms of small
A=a(I=D(+2)R % ni=ns - 11+ DR, %, z, in the asymptotic expansion of the Bessel functions in Eq.
s (12). Then the characteristic equati¢t?) simplifies to

p _Pr, P2  Ps o _P1 P2 (13) o B _ ANRSI(1+1)
T I+ Ry 22z 1-—=—5~0, Ei=—— 5 :
0 72(21—1)(21+ 1)2(21 + 3)

andz; hereafter are taken at=R,. Now we can prove that i
the modd =1 does not appear in the characteristic equatiorHere also a complicated expression 8 is given in the
(12). This mode corresponds to the translational motion ofcase of vesicles. The solutions of Ed.7) depend on the
the droplet without its deformation. Then in the system con+elation é=4Z,/|w,|? that can be smaller than or of the
nected with the droplet, with the origin in its center of mass,order of unity. The simplest case, which includes physically
u=0 [Eqg. (3)]. With this condition our system of equations interesting limits B= —nida/dns—0 and B—o, corre-
is self-consistent only in the case when ais@,=0. Forl sponds toé<1 when we have again one of the solutians
=1 there is no motion in the surface layer and the expan~w,,, and the new frequency 8~ y,

sions(7) (as distinct from{12] and[10]) and(3) both begin

with | =2. Finally, it has been discussed][ihl,12 that in the AnR;

region of very low frequencies the exchange of the mol- e~ ——— [(1+1), (18
ecules between the layer and the surroundings must be taken Pici] @rel

into account. This would change the continuity equati®n |w,6] <| @,e]. This mode exists only for nonzero compress-

and correspondingly Eq(12) and its solutions. Together jiy modulus B. In the limits of small and large, the
with other authors we neglect this exchange: the validity of,

LV i X analytical expressions fas e are as follows:
such an approximatiofimpermeability of the surface filin n P rel

has been proven if6] for the lowest-frequency modéthe —nRY(21+1)
higher the modes the better justified this approximation is | @ ol ~ W B—0,
| |
ll. ANALYTICAL SOLUTIONS FOR THE NORMAL ARA(I+1)(21+1)
MODE FREQUENCIES | @ ol =~ B—co. (18a

(IP=Dp+1(1+2)q,’
Equation(12) gives wide possibilities for the analysis of

the surface spectra. Below we consider a few examples thA¥henB—0, Eq.(15) is in agreement with our calculations

can be treated analytically. The most often studied case ikL7] and the results found in the theorigl6,27 (if the cap-

the literature corresponds to large penetration depths of thddary or generalized Laplace conditior{13] p;—p,

shear waves inside and outside the droplei>R,, which =2alRy—2B/Rj is taken into accoult that neglect from

means smallz|. Using the asymptotic expansions for the the beginning the inertia terms in the hydrodynamic equa-

Bessel functiong21] for |z|—0, we obtain a quadratic tions. On the other handy differs from the frequency

equation with respect ta, which is truly neglecting the found by Lebedev and Muratd12,23. It is to be noted that

fourth-order terms irg; , in a number of previous less general studies, €1,6,29,
the droplet dynamics is calculated using equations for a
Wrel sphere neglecting the fluctuations of molecules in the surface

1- 7—|w2,~0, layer, i.e., the model equations do not contain terriB.

This means that if we formally puB=0 in Eq. (15), our
5 ) expression forw, (since in this cases, does not exist
_ Ro ) +&4| +41+3 (14) should correspond to frequencies found in these works.
(21-1)(21+3) p Ry, 2l+1 While the frequency found if22] (see also references thgre
for microemulsions is exactly Eq16) with B=0, the fre-
The expression fol, which is rather complicated in the guency obtained in the often cited wol] is different. To
general case, is shown here in the case of vesicles. From twf@mpare the latter result by Milner and Safran for vesicles
solutions of Eq.(14) the solution consistent with the used With @i, we have to set, = 7,= 7 and formally identify
approximation is a purely relaxation mode~w, with  their Lagrange multiplier-y with our o (microscopic inter-

%

small corrections of the order z2. Here facial tension. However, their frequency still differs from
w.e by the factor (4%+41—3)/(4l1%+41—2). Moreover,
R2 the concept of the constant mean excess Arg@] leads in
e~ — = _90 (AII+1)(p+q) the limit A— 0 (corresponding to spherical droplets in equi-
2141 piq librium) to w—o. The same can be related to the result by
—n[(12=1)p+1(1+2)q1}, (15) Schneider, Jenkins, and Wepbb], who haveC;=0. As to

the lower frequencys,, We did not find its analytical ex-
pression18) in the literature. The second of the limits83),
B—« (incompressible lay€r10,16), corresponds to the re-
sult given in[23] but differs from the frequencies obtained in
q=27,(12= 1)+ 5,(212+1). (16) [16]. The result[6] is thought to describe incompressible

pi=n1(212+ 41+ 3) + 27,1 (1 +2),
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vesicle membranes. Then it should coincide with Ega 1

for B—o. However, it differs fromw, by the factor (22 O=———

+21-1)/(212+ 21 —3). Ropi,
WhenB#0, fluctuations of the molecules in the surface 2p

layer can significantly influence both the, and @,y and + P2772( 1— —S”

could be, in principle, determined from dynamical experi- (I+1)Rop)

ments like inelastic scattering of neutrons. The neutron scat- (23

tering experimentg3-5] on microemulsions were inter- S 1 \/E |+1)p— |__1

preted so far within the modg¢b] with an incompressible 2_R0p|\/w_ p1 ( Pr=p1

surfactant layer and the curvature elasticity as the restoring P

force. However, these studies yielded values of the bending \/1;\2 |+2

rigidity « higher than measured with indirect macroscopical N |lp—p2 =1

or optical method$24]. We thus suppose that it would be

interesting to reconsider the interpretation of the neutrorwhen not onlys; is small but alsas;Ryp, /ps<1, the solu-

scattering experiments on microemulsi¢8s-5] with the ac-  tion of Eq. (22) is

count for surface compressibility.

— 2ps
( P1771( o |R0P|)

Now, let the penetration depth of the shear waves outside 1+i _ Rop Ry 2
and inside the droplet be small. In the main approximation = @~w,| 1— Y A N R . (24
for |z|— we have from Eq(12) s s
(A= p02) (N + psw?/Ry) ~0. (19) This frequency did not appear in previous papers, particu-

larly in [12], where the surface densify, was neglected.

Thus one of the characteristic frequencieg,, corresponds ~There has been found another surface modglBj, con-

to the capillary wave. It is to be expected that the othefected with the fluctuations of molecules in the surface. A
frequencyw,, is much higher since usually we hayg/R, S|m|I§1r mode can be optamed here als_o fr'om Ep) as a

<p, (andn;>A,). The equation that describes the region ofSPecial case when the flfth-olrger equat|0r21 is reduced assum-
frequencies from the capillary frequenciesdg is (correc- N9 smallx=|w/w,| <1, 5,<x™, and&,<x*6;Rop) /ps. In

tions to it are of the order ad %): contrast to the previous case, the quandifiRop, / ps is much
larger than unity. Then the solution iv~w,=w,
wgap Ps w’2) (_i)llg(‘SlROPI /ps)—2/3, that is,
P w2 -1 R_O 1— E 1 . zps
) ) wn~§(i1f3—|) “hR. | VP 1+F
[+1 il ipy ipy 1o 0PI
oL T e 2. ||| >
1 2 1 2 + 1- ) ) . 25
5 P2772( (|+1)ROPI ( )
1p1Ps p
1z.R I+1-(1-1) w2 Finally, there are no solutions for the frequencies in the re-
10 gion much higher thaw, .
'2Ps | (1+2) < ~0. (20
(1+1)2,R, w2 . IV. SIMPLE ESTIMATIONS, NUMERICAL

SOLUTIONS, AND DISCUSSION

The solution describing weakly damped capillary waves does The yariety of the model parameters for real systems is
not depend on the surface compressibility, broad, so we shall only briefly summarize the conditions at
. which the calculated modes could exist. The first assumption
o~ |1t ( -1 L2 \/—) to be taken into account is that the droplet radii must be large
ca 2Rop|2womy | | P 31 VP22 enough, at leasR, must be larger or of the order of 100 A.
P A o
For simplicity, in the estimations we assume that the param-
A eters of the bulk fluidsy andp, are close to those for water,

wiap=—. (21)  which is true exactly for vesicles and approximately for
P many systems of interest.
This solution is a generalization of the well-known classical  First, consider the mode [Eq. (15)] that is most fre-
result[25]. quently studied in the literature. It was found here using the
The region of frequencies much higher thap,, is de- asymptotics|z|—0. In fact, the obtained quadratic equation
scribed by the equation (14) (as seen from the asymptotic expansion of the Bessel
functions[21]) serves as a good approximation to Etj2)
Ropi (1w, wf) i, Y2 when|z,|</3 and|z,;| can be less or even of the order of
L (7) 2! <—> 52—1}“0, unity, |z,|<8 (for all values ofl including |=2), or |z]

22 <2| (if only large I>2 are considered In addition, to ob-
tain w, We require 4o | <1, where3,~R3p/107 (I
where the small quantitie8, and &, (of order~1/z) are =2) and 2|~R§(pll +ps/Rp)/2l (1>2). Note that for
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largest possiblé the termps/Rg is not negligible in com- s

parison withp/l and should be taken into account. Usually, e s 89
for microemulsion or vesicle systems; is very small, 0§ g 8 ¢ ° : : o o o
<10 *Jm 2 But when it dominates iny, from Eq. (2), R v 3o

and the modulu® is negligible, the above requirements are ° g ®

satisfied if @Ro(p/l + ps/Ry)/27?<1, for all valuesl. For 10° | :

realistic values ofx (~10"2 Sl or smalley and p this con-

dition holds for radii up to~5-10% A (1=2,3,...). Wher is 1 °

large, we needRy<I(2X 10 °— ps)10~2 m which is always R I

satisfied for highest numbets Other possible cases can be 10° r o °

analyzed analogously. So, when the bending terms dominate 10! | . o

wre, the approximation requiresp/Ry7?<1 (1=2) or 10-1} .

kl2(pll + ps/Ry) /4Ry p?<1 (largel) that is well satisfied for 2 4 s 8 1‘0 1'2 1‘4 1'6 1‘8 2‘0
known systems. The frequency then scales WiR€18—6]. !
When the compressibility term-B dominates in Eq(15),

i; EiSt'g:atll(.)tn fct)rwre|l|25 EBIMF:,[O”’ for bo”ljl t: 2b an(: lth =Rew+i Im w depending on the orbital numbkerThe system pa-
. In the literature]12], B is often assumed to be of the rameters correspond to water-in-oil microemulsion described in the

order of the usual surface tensiond0 2 Jm 2, sothe con- o, 1073 pas, 7,=0.648<10° Pas, py=10° kg m 3,
ditions for the existence of such a mode are similar to thep2:0.73>< 1P kgm 3, p.=0, Ry=100A, x=3.8gT, *=
above case when the surface tension dominatgs The 3 g [5], and the quantitieR, ande are calculated for the case of
mode can exist for droplets with radii up to 500 A or pro- two-phase  coexistenceR,=2«R,/(2k+x) and a=(2«
portionally larger with decreasinB<<10~> Jm 2. For high  +7%)/R2. The lower and upper parts of the figure shiRe w| and
numbersl the radius can be approximatdlf2 times larger, |Im w|, respectively. When the surface compressibility moduBus
except for the case whepy is unusually large, larger than =0 (dark circles, |Im | is indistinguishable from the analytical
10 % kg m 2. Thus we see that the discussed mode in thesolutionw, (EqQ. 15. ForB=102 J m 2 (open circley the higher
case when the surfactants show appreciable changes in thequency is well described by the expression &g, and the
area per molecule can exist in microemulsions. However, itower one corresponds te ., from Eq. (18).

cannot be the frequency of the mode observed in neutron

scattering experimen{8—5] where the relevant frequencies radius of curvature and the surface tension coeffigiant
scaled with 1R3. In any case, there is a wide region of the calculated for the case of two-phase coexisteft®, Rs
values of B when the surface compressibility significantly =2«Ro/(2x+%x) anda=(2x+«)/Rj. The surface density
influences the relaxation mode. This fact should be takems did not affect the calculations and can be neglected. For
into account in the interpretations of dynamic experimentsthese parameters the used approximatiarge penetration
The scaling 1R3 can be shown also by the frequensy,  depths of the wavesis well satisfied and leads to almost
from Eq. (18). This is possible in the case when the higherpurely relaxational modes. Figure 1 gives the dependence of
relaxational frequency,, is determined mainly by the com- the real and imaginary parts of the frequercyn the orbital
pressibility and can be estimated ag,(B—o)~Bl/4Ry7n
~w(B—0) andA~R,° [Egs.(13) and(2)] is given by [s‘i’l]
the curvature elasticity. In this case,, practically does not 1012
depend on the compressibility modulBsand its estimation

is |w | ~ (/4Rg7)!, which coincides with the expression  1p1 - ~*
for w, in the opposite case wha= 0. If the conditions for

the existence of the frequeney,, are satisfied, the quadratic ~ 10®
equation(17) also holds. Its solutions are governed by the
parametek, small in both the considered cases of small and 10°
large B, when the above estimations are valid. For interme-

FIG. 1. Numerical solutions of Eq12) for the frequencyw

diate values oB (—n, comparable td\, so that¢ becomes 104

comparable to )l the solutionsw=~(wf2)[1=(1—¢&)]¥?

can differ quite significantly fronw,, andw . 10 - , s
The above discussed results are demonstrated by Figs. 10-8 10~7 10-6

and 2. Figure 1 shows numerical solutions of the character- Ro[m]

istic equation(12) with parameters corresponding to water- :
in-oil (decang microemulsion systems studied in RE5]: at FIG. 2. The dependence ¢in | on the droplet radius foB

h 20 °C the bulk densit 4 vi » =0.01Jm? and two values ofl (I=2 and|=90). Numerical
the temperature the bu ensities and viscosities ar@)pen circley solutions to Eq(12) and analyticalsolid line) solu-

7=10"° Pas, 77220'648>< 10°° Pas, p;= 10° kgm % tions wye aNdw ¢ (Eqs. 15 and 1Bare showng . being the lower
p2=0.73<10° kg m™3, and the equilibrium radius iR, frequency. The used parameters correspond to oil-in-water micro-
=100 A. The spin echo experimers] yielded the follow-  emulsion system[26]: 7,=0.648<10 % Pas, 7,=10"% Pas,

ing bending moduli for the AOT sodium di-2-ethylhexyl sul- 5, =0.73x10® kgm™3, p,=10° kgm™3, and p;=10 % kgm 2
fosuccinate surfactant layek=3.8gT, and « close t0  The Gaussian modulig= —1.75, 2k+x=0.%gT [27], and the
—1.9%. The remaining parameteRs anda (the spontaneous parameterk, and « are determined as in Fig. 1.
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numberl. In the case when the compressibility moduBis [stfl]
=0, the absolute value of the imaginary part of the frequency

cannot be distinguished on the graphs from the analytical 107
solution w,e given by Eq.(15) (the difference from the ana-

lytical solution[6] used in the interpretation of the experi- ot

mental datd4,5] is, however, appreciable and grows with 1010

the number when the conditions for the existence of the

mode become less well satisfleth agreement with our ana- 10°

lytical analysis, whenB#0 (we used the valueB .

=10"2Jm?), numerical calculations possess two solu- 108  °

tions: one of them well described by the expressiondgy e

and the solution with lower values dfim w| corresponds to 1074 ° s . ! l

w o from Eq.(18). The real part of the calculated frequency 0.01 0.1 1 Bl7m-) 10 100 1000

is relatively very small and sharply decreases to zero with
increasing. It could be, however, observable for the lowest  FIG. 3. Absolute values of imaginargdark circle and real

| (the maximum of |Rew|~1.6x10° s, when B parts(open circleg of the frequencies calculated numerically from
=102 Jm 2 and1=2) in dynamic experiments by a fre- Eq.(12) and analytically according to E4) for w~w, (the solid
quency shift from the central peak of the scattering. Figure 2ine is for|Im «| and the thicker line fofRe w|) as depending on the
shows the dependence [dfn w| on the droplet radius foB compressibility gnodulu?. Other parameters are as in Fig. 1, ex-
=0.01Jm?2 and two values of (I=2 and largel=90).  ceptforps=10""kgm™

The parameters used here are the same as irff Bgffor the ] o

oil (decangin-water surfactant (§E;) system: 7,=0.648 us_uaI surface tensions. A good approximation for the calcu-
X103 Pas, 7,=1073 Pas, p,=0.73x10° kgm=3, p, lation of tr_\e frequenc_ywn [Eqg. (25] can be reachgd for
=10 kgm3, and «+x=0.%gT. Now the Gaussian droplets.W|th large radiR, and/or small surface dgns!m. '
modulusk is chosen as ifi27], = — 1.75, and as above, [_)ependlng on the syst_em parameters, the following inequali-
the parameterR; and « are determined for the case of two- €S have to be satisfied:BR,>10 ° (1=2) or BRo>2l
phase coexistenci26]. The surface layer thickness 11 A X10 °Jm l(llzargel), andl/%OBRO/I) >(10Bpg)~" or 3
determined irf26] allowed us to estimate the surface densityxllog(BROH) >2(10Bps)™" (the last two conditions ap-
ps, Which cannot be neglected for large by the value plicable for bothl=2 and|>2). It is then seen _that for
10 kg m2. In agreement with our estimations for larBe values ofB close to those of the usual surface tengibh,12]

for I=2 (and1=90 but largeR,) the frequencyw,e scales the required radius is very large, much larger thaf AQin
with 1/R, and w o~ 1/R8. For largel and small radii the this case the mode cannot exist in microemulsions. Figures 3

and 4 show the dependence of the solutions to (E8). on

the compressibility moduluB. To present the analytical so-
lutions for the frequencies, andw,,, the orbital numberis
chosen to be small, because in the opposite case it is difficult
to satisfy the conditionfz; J>1+ 1. Figure 3 shows the ab-
solute values of imaginary and real parts of the frequencies
calculated numerically and according to E84). The drop-

bending term is dominant im, SO it scales~1/R3, and
w e~ 1/IRg. Our analytical results describe very well the nu-
merical solutions of Eq(12), especially in the cade=2. The
only exception is a small region around the radius 1fn
when the parametef=4|w || 0o ! [introduced after Eq.
(17)] becomes for largé very close to unity and the deter-
minant of the quadratic equatidh?) close to zero. In such a
case the small terms which were neglected in obtaining Eq. ,
(17) should be taken into account to obtain a correspondence [s-!]
with the exact equatiofil2).

Now consider the frequencies calculated with the assump-
tion |z|—< (it is seen from the asymptotics of the Bessel
functions that the approximation works well if we hajz 10
>|1+1). The frequencyw ,, does not depend oB so we
have to distinguish the two following cases. For the first one,
when the bending terms dominateds, the used asymptot-
ics cannot serve as a good approximation for known systems
since it requires unrealisti¢too large bending moduli.
Whene is large and dominates, , the approximation can be [
good for very large droplets and works better for small ° . . !
according to the inequalitiestRy>10"8 J/m (=2), or 0.1 " 1
aRy/I>2x10"° Jim (>2). The conditions at which the Blm™]
surface frequencys, exists[Eq. (24)], can be satisfied for FIG. 4. Absolute values of imaginarfdark circles and real
large enough values of the modulBs It is seen from two  parts(open circles of the frequencies calculated numerically from
inequalities that for botth=2 andl>2 read(all quantities  gq.(12) and analytically according to E(R5) for o~ w,, (the solid
are in Sl unity 5x10°* (10Bp) < (pd/Ry) M2 line s for lIm w| and the thicker line fotRe w|), as depending on
<(Bpg/10)Y4. Thus for surface densitiess in the range the compressibility modulus. Other parameters are as in Fig. 2,
10" 7—10 8 kg m~2 the modulusB must be much larger than but with p;=10"7 kg m 2 andRy=10"° m.

107 ¢
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lets are Sma||R0:10—8 m, the surface density rather high, penetration depths of the waves are large, two relaxational
ps=10"° kg m2, and the modulus takes large values up modes simultaneously exist instead of one overdamped mode
to 10° J m 2. Other parameters are the same as for water-indescribed in the literature. We have also predicted a mode
oil droplets illustrated by Fig. 1. As already discussed, in thethat can exist in the opposite situation of small penetration
literature the surface layer is usually considered as incomdepth, if the layer is almost incompressible. In other cases
pressible, which corresponds to infini®@ In agreement our analytical solutions correct the results already known
with the estimations, the picture shows thatBaisicreases to  from the literature and the approach allowed us to specify the
very large values, the frequency becomes well described byonditions of applicability of the solutions more precisely.
our solutionw,, not found in previous works on the droplet Except for the capillary wave mode, the compressibility of
dynamics. The data in Fig. 4 are calculated for oil-in-the layer significantly affects the surface modes. We believe
water droplets with much larger radiRo=10"°m, small  that some of the predicted features of the surface vibration
ps=10"" kg m?, andB changing from 0.01 to afew JM.  gpectra(such as the existence of the couple of overdamped
Other parameters are as in Fig. 2. For such systems, in thgt not purely relaxational modesould stimulate more at-
region of largerB, the solution of Eq(12) shows the ten- tention to this influence in further investigations, especially
dency to become close to the frequenay from Eq. (25,  in the dynamic scattering experiments capable of possessing
which corresponds to the mode predicted in R&2] as a  some of the quantitative characteristics of the liquid drop
mode connected with the redistribution of the surfactant mOl'systemS such as microemu|sion' emu|sion, and vesicle sys-
ecules on the droplet surface. tems, which have long been of great interest in physics and
In conclusion, we have calculated the surface vibratiorhppncations_
spectra of liquid droplets within the hydrodynamic phenom-
enology more exactly than it has been done so far. First of
all, the inclusion of the compressibility and mass density of ACKNOWLEDGMENTS
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